2w^2+10w-651=0

Simple and best practice solution for 2w^2+10w-651=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2w^2+10w-651=0 equation:



2w^2+10w-651=0
a = 2; b = 10; c = -651;
Δ = b2-4ac
Δ = 102-4·2·(-651)
Δ = 5308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5308}=\sqrt{4*1327}=\sqrt{4}*\sqrt{1327}=2\sqrt{1327}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{1327}}{2*2}=\frac{-10-2\sqrt{1327}}{4} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{1327}}{2*2}=\frac{-10+2\sqrt{1327}}{4} $

See similar equations:

| 44+6s+2s=180 | | 4x+6−7x+9=18 | | 7x+4×=-66 | | 3n+1n=-6 | | 106+44+2z=180 | | 2w^2+32w-6144=0 | | 29-q=10 | | t+15=85 | | p–(-27)=13 | | t-15=85 | | 2a-24=-6 | | 3+2x+2+3x=15 | | 3x2-20x+12=0 | | -3+6r=2r+3r | | -9a-5-9=22 | | -3m-4=-16 | | 10+2v=1-7v+6v | | -2m+3-2=16-5m | | -2a-2a=-12+2a | | 11x-7=14x+12 | | 6n-14=-6n+5n | | 25(^x+1)=625(x-8) | | 6(1.25+x)=10 | | 2+k=-13+6k | | 15+5n=3+2n | | 14x+12=11x-7 | | 25(x+1)=625(x-4) | | 12w=6w+48 | | (X-16)/(x+6)=3/5 | | 2b+14b=64 | | 1-2n=4n-11 | | 3x+5x=57+1=8x=58=7 |

Equations solver categories